Volume 20

Number 1

January 1981

Inorganic Chemistry

0 Copyright 1981 by the American Chemical Society

Contribution from the Department of Chemistry, Kansas State University, Manhattan, Kansas 66506

Chlorofluorination of Nitriles. Preparation of N-Chloro-N-fluoroalkylamines

AKIRA SEKIYA and DARRYL D. DESMARTEAU*

Received March 28, 1980

The reaction of halogenated **nitriles** with a 1:l mixture of C1F-F2 proceeds in **high** yield to form **N-chloreN-fluoroalkylamines** of the type RCF₂NC1F. Characterization of the new compounds CF_3CF_2NCIF , $CF_3CF_2CF_2NCIF$, (CF_2NCIF) ₂, and CC13CF2NC1F is reported along with an improved synthesis of ClCF2NCIF. The chlorofluorination reaction **proceeds** mainly via the initial formation of RNC12, which is then fluorinated in a new type of reaction to give RNClF and CIF.

Introduction

 N_nN -Dihaloalkylamines are useful synthetic reagents. Many compounds of the type $RNCl_2^1$ and RNF_2^2 have been prepared and utilized in a variety of interesting reactions. Mixed *N***chloro-N-fluoroalkylamines,** RNClF, are another potentially useful class of reagents which have not been investigated due to lack of suitable methods for their preparation. Only a few examples of **N-chloro-N-fluoroalkylamines** are known: and $CH₃CF₂NCIF⁵$ These compounds are prepared by reaction of the corresponding N -fluorimines with ClF,⁴ except in the last example which was obtained from $CH₃CN$ and CIF₅⁵ (eq 1 and 2). In general, the N-fluorimines are difficult $>C=NF + CIF \rightarrow >CFNCIF$ (1) $CF_3NClF,$ ^{3,4} $ClCF_2NClF,$ ⁴ $(CF_3)_2CFNClF,$ ⁴ $Cl_2CFNClF,$ ⁴

$$
\geq C = NF + CIF \rightarrow \geq CFNCIF
$$
 (1)

$$
>C = NF + CIF \rightarrow > CFNCIF \tag{1}
$$
\n
$$
CH_3CN + ClF_5 \rightarrow CH_3CF_2NCIF \tag{2}
$$

to obtain and the low-yield reaction with CIF_s has not been extended to other examples. In this paper, a new high-yield synthesis of **N-chloro-N-fluoroalkylamines** from the reaction of RCN with a mixture of CIF and F_2 is reported⁶ (eq 3).

RCN + CIF + $F_2 \rightarrow RCF_2NCIF$ (3)

$$
RCN + CIF + F2 \rightarrow RCF2NCIF
$$
 (3)

This method utilizes two new types of reactions, the addition of fluorine to $RCF=NCl$ and the fluorination of $RNCl₂$ to RNClF.

Experimental Section

General Methods. All compounds were handled in Pyrex or stainless-steel vacuum systems equipped with glass-Teflon or stainless-steel valves. Pressures were measured with a precision Heise Bourdon tube gauge in the metal system and a Wallace and Tiernan differential pressure gauge in the glass system. Amounts of volatile compounds were determined by *PVT* measurements with the assumption of ideal gas behavior. Molecular weights were determined by vapor density measurements. Temperatures were measured with a digital read-out copper-constantan thermocouple.

- (1) Schack, C. J.; Christe, **K.** 0. *Isr. J. Chem.* **1978,** *17, 20.* **(2)** Ruff, J. K. *Chem. Rev.* **1967, 67, 665.** Freeman, **J.** P. *Adu. Fluorine Chem.* **1970, 6, 1970.**
- **(3)** Hynes, J. B.; Bishop, B. C.; Bigelow, L. A. *Inorg. Chem.* **1%7,6,417. (4)** Swindell, R. F.; Zaborowski, L. **M.;** Shreeve, J. M. *Inorg. Chem.* **1971,**

(6) For a preliminary report of this work *see:* Sekiya, A.; DesMarteau, D. D. *J. Am. Chem.* Soc. **1979,** *101,* **7640.**

Table I. Reaction of RCN with the $CF/F₂$ Mixture^{*a*}

	reacn conditions ^c		
RCN	$T, {}^{\circ}C$ t, h		products (vield, $%$)
CICN	25	4	CCF, NCF (94)
CICN	0	10	CCF, NCF (91)
CICN	25	10	CICF, NCIF (89)
CICN	25	24	CICF, NCIF (66)
CF, CN	25	40	CF, CF, NCF (95)
CF, CN	25	6	CF, CF, NCIF (46), CF, CN (28),
			CF, CF, NCl, (24)
CF_3CF_2CN	25	63	CF, CF, CF, NCF (89)
(CN) , b	25	25	(CF, NCIF), (71)
$_{\rm CCl_3CN}$	25	29.	CCI, CF, NCIF (60)
CH ₂ CN ^d	25	1	CH ₃ CF ₂ NCF (12)
			CH ₂ CF ₃ (45)

 a A mixture of 3 mmol each of RCN, ClF, and F_2 . Yields are **A** mixture of 3 mmol of *(CN),* and 6 When F_2 was condensed onto based on starting RCN. ^{*a*} A mixture of 3 mmol each of RCN, ClF, and F₂. Yields are based on starting RCN. ^{*b*} A mixture of 3 mmol of $(CN)_2$ and 6 mmol each of ClF and F₂. ^{*c*} After the reactor was slowly warmed from -195 to +25 °C fo CH₃CN and ClF at -195 °C, a small explosion occurred inside the reactor.

Infrared **spectra** were recorded on a Perkin-Elmer 180 spectrometer using a 10-cm glass cell fitted with silver chloride windows. NMR spectra were taken at 29 °C on a Varian XL-100-15 spectrometer using trichlorofluoromethane as a solvent and reference. Chemical shifts are reported as ϕ^* values.⁷

Reagents. The reagents CICN, (CN)₂ (Matheson Co.), CF₃CN, and C₂F₅CN (PCR inc.) were from commerical sources and were used as received. CCl₃CN (Columbia Organic Chemical Co.) was distilled before using. Fluorine (Air Products) was passed through a NaF scrubber before use. ClF was obtained by the reaction of equimolar amounts of F_2 and Cl_2 in a Monel bomb at 230 °C for 18 h. ClF was removed from the reactor at -111 °C to avoid contamination by Cl_2 and ClF₃. CF₃CF=NCl⁸ and ClCF₂NCl₂⁹ were prepared by literature methods.

General Method for the Reaction of RCN with a Mixture of *ClF* **and F₂** (Table I). A dry stainless-steel reactor (75 or 150 mL) was treated with F_2 at 25 °C for 5 h. The passivated reactor was then cooled to -195° °C, and 3 mmol of RCN, CIF, and F₂ was added in that order. In the case of $(CN)_2$, $(CN)_2$ (3 mmol), ClF (6 mmol),

- **(8)** Sekiya, **A.; DesMarteau,** D. D., **submitted** for publication.
- **(9) Young,** D. E.; Anderson, L. R.; **Fox,** W. B. *J. Chem. Soc. D* **1970,395.** Hynes, **J.** B.; Austin, T. E. *Inorg. Chern.* **1966,** *5,* **488.**

^{10,} **1635.**

⁽⁵⁾ Lustig, M. *Inorg. Chem.* **1967, 6, 1064.**

⁽⁷⁾ Filipovich, **G.;** Tiers, G. **V.** D. *J. Phys. Chem.* **1959, 63, 761.**

and F2 **(6** mmol) were added. The reactor was then warmed to **25** "C over **1** h, and the reaction was continued as shown in Table I. The reactor was then cooled to **-195** "C, and a small amount of noncondensable gases was pumped out. The reaction products were then separated by GLC using a 10 ft \times ³/₈ in. column packed with 40% Halocarbon **11-21** polymer oil on Chromosorb P. (In the cases of CCl₃CN and $(CN)_2$, a 1 ft \times ³/₈ in. column was used.) Characterization of the RNClF compounds follows.

CICF2NCIF mol wt calcd **153.92,** found **155.4;** the I9F NMR and IR agreed with literature values.⁴

CF3CF2NCIF bp **35** "C; glass at **-195** "C and colorless liquid at -153 °C; mol wt calcd 187.47, found 189.0; vp log $P_{mm} = 6.3917$ $\frac{\Delta t - 133}{\Delta t - 133}$ C; mor wr carea 187.47, iound 189.0; vp log $P_{\text{mm}} = 0.3917$
- 645.54/T - 90082/T²; $\Delta H_{\text{vap}} = 5.93$ kcal/mol; $\Delta S_{\text{vap}} = 21.5$ eu; IR **1351** (m), **1237** (vs), **1172 (s), 1078 (s), 922** (m), **d9 (vw), 799** (vw), **723** (w) cm-I; 19F NMR CF3MCFAFBNCIFX **\$*M 80.9** (dd), ϕ^* _A 116.9 (ddq), ϕ^* _B 107.1 (dd), ϕ^* _X 7.4 (br), $J_{\text{MA}} = 1.5$, $J_{\text{MB}} =$ \sim 0, J_{MX} = 13, J_{AB} = 201, J_{AX} = 7, J_{BX} = 39 Hz.

 $CF₃CF₂CF₂NCIF:$ bp 34.4 °C; glass at -195 °C; mol wt calcd **237.48, found 237.5;** $vp \log P_{\text{mm}} = 5.9206 - 429.39/T - 155460/T^2$ **;** $\Delta H_{\text{vap}} = 6.59 \text{ kcal/mol}; \ \Delta S_{\text{vap}} = 21.4 \text{ eu}; \text{ IR } 1339 \text{ (m)}, \ 1290 \text{ (w)},$ **1235** (vs), **1197 (s), 1150** (m), **1137 (m), 11 12** (m), **992 (s), 920** (m), **884** (w), **865** (vw), **780** (w), **740** (m), **712** (m), **650** (w) cm-I; NMR (dm) , ϕ^*_{B} 103.3 (ddq) , ϕ^*_{X} 6.5 (br d) , $J_{MB} = 10$, $J_{NA} = 3$, $J_{NX} = 16$, $J_{AB} = 204$, $J_{BX} = 43$, $J_{MN} = J_{NB} = -0$, J_{MA} or $J_{AX} = 3.5$ or 7 Hz, J_{MX} not determined. $CF₃^MCF₂^NCF^{AP}NCIF^X ϕ^*_{M} 82.2 (ddd), ϕ^*_{N} 125.4 (dd), ϕ^*_{A} 113.9$

(CF2NC1F)2 (mixture of diastereoisomers A and **B):** bp **70** "C; colorless glass at **-195** "C; mol wt calcd **236.93,** found **238.4;** vp data *[T,* "C *(P,* mmHg)] **4.3 (27.3), 14.9 (51.8), 21.2 (70.6), 26.0 (91.7), 32.1 (129.2);** IR **1295** (m), **1213** (vs), **1142 (s), 1050 (s), 914 (s) 884** (m), **850** (w), **802** (vw), **764** (sh), **748** (m), **712** (w), **595 (vw)** cm-I. I9F NMR at **29** "C (integration showed ratio of **A:B** as **4:3)** F^X CINCF^AF^BCF^{A'}F^{B'}NCIF^X': (A isomer) $\phi^*X \simeq \phi^*X = 6.4$ (br), $\phi^* A = \phi^* A' = 102.5$ (m, 8 lines), $\phi^* B = \phi^* B' = 111.3$ (m, 14 lines), $J_{AX} = J_{AX'} = 40$, $J_{AB} = J_{AY} = 195$, $J_{BX} = J_{BX'} = 17$ Hz (other coupling constants not determined); (B isomer) $\phi^*x \simeq \phi^*x = 6.4$ $(J_{AX} = J_{AX'} = 37, J_{BX} = J_{B'X'} = 16, J_{AB} = J_{A'B'} = 195, J_{AX} = J_{AX} = J_{AX}$ $= 14$, $J_{\text{BX}} = J_{\text{BX}} = 8$ Hz (other coupling constants not determined).

CCl₃CF₂NClF: mp -56.0 to -56.5 \degree C; mol wt calcd 236.84, found **236.0;** IR **1204** (vs), **11 12 (s), 925** (vw), **938 (s), 871** (w), **846** (vs), **820** (vw), **756** (w), **713** (m), **690** (m) cm-I; I9F NMR CC1₃CF^AF^BNC1F^X ϕ^* _A 91.7 (dd), ϕ^* _B 110.6 (d), ϕ^* _X -3.6 (br d), J_{AB} = 182, J_{AX} = 43, J_{BX} = ~1 Hz. J_{AB} = 182, J_{AX} = 43, J_{BX} = \sim 1 Hz.
Reaction of CICF₂NCl₂ with F₂. Fluorine (3 mmol) was condensed

onto CICF2NCI2 **(3** mmol) at **-195** "C in the stainless-steel reactor. Then the reactor was warmed to **25** 'C over **1** h and stood at **25** "C for 4 h. After a small amount of unreacted F_2 and other gases were pumped out at -195 °C, the reaction products were separated through **-1 11** and **-195** "C. The product in the **-1 11** "C trap was separated by GLC, **giving** C1CF2NC1F in **74%** yield, with three other unidentified compounds. The molecular weight of the material in the -195 °C trap was **67.0,** and the IR spectrum showed the presence of a large amount of ClF with absorptions at **793** and **785** cm-l along with some absorptions from CF_2Cl_2 and SiF_4 .

Reaction of CF₃CF=NCI with F_2 **. Fluorine (1 mmol) was con**densed onto CF₃CF=NCl (1 mmol) at -195 °C in the stainless-steel reactor. The reactor was warmed to **25** "C over **1** h and kept at **25** $^{\circ}$ C for 3 h. After a small amount of unreacted F_2 was pumped out at **-195** "C, the reaction mixture was separated by GLC, giving CF3CF,NC1F **(0.8** mmol) and several unidentified byprcducts

Results and Discussion

The reaction of nitriles with a mixture of $CIF/F₂$ are summarized in Table I. The reactions proceed in excellent yield in all cases except for $CH₃CN$, where explosive side reactions occur. For all halogenated nitriles except ClCN, the overall reaction is quite slow and 1 or more days are required for maximum yields. With ClCN, the optimum reaction time at 25 °C was 4 h on a 3-mmol scale. Longer reaction times decrease the yield, presumably due to some unknown catalytic decomposition of $CICF_2NCIF$. Pure $CICF_2NCIF$ is stable under similar conditions.

The chlorofluorination reactions are not explosive on the scale indicated except for $CH₃CN$. Attempts to scale up the Scheme **I**

reactions of $CF₃CN$ and $C₂F₅CN$ however resulted in explosions. This is believed to be due to difficulties in controlling the reaction conditions. This was partially confirmed by a 10-mmol scale reaction of $CF₃CN$, where the fluorine was added in five aliquots. The overall yield of $CF₃CF₂NCIF$, however, was reduced to **62%.** A two-chamber reactor in which the F_2 would be added over a short time (but not so fast as to give a liquid phase) to the CF_3CN/CIF mixture, as it warmed slowly from -195 °C, would probably allow these reactions to be **run** on a considerably larger scale. In the case of CICN, the reaction has been carried out on a 30-mmol scale without incident with use of a single reactor. The yields on the large scale remained near 90%.

The sequence of reactions leading to formation of RNClF cannot be stated with certainty, but the Scheme I summarizes some of the possible reactions. The reaction of ClF with RCN (a and b) takes place at very low temperatures, probably near the melting point of ClF (-155 °C), and RCF₂NCl₂ derivatives are formed in high yields.^{8,9} Intermediates \overline{RCF} =NCl have not been isolated in this study, even when a large excess of RCN is employed. An initial reaction of RCN with F₂ instead of ClF cannot be of much importance since ClCN can be recovered in 80% yield when allowed to stand with F_2 for 4 h at **25** "C. In the latter case, seven products were observed by GLC and it is noteworthy that four of these have retention times identical with those of minor products found in the reaction of ClCN with $F₂/CIF$. Reaction e is not observed to any extent when a known sample of RCF=NCl is allowed to react with F_2 . Reaction f, while a known reaction,^{8,10} is also unimportant since no $RCF₂NF₂$ compounds have been found in any of the reactions studied. Reactions c and d have been confirmed independently for several *cases* and details are given in the Experimental Section for $CF_3CF=NC1/F_2$ and $CICF_2NCl_2/F_2$.⁸ From the short-reaction-time run with $CF₃CN$, it can be assumed that reaction path a-b-c is the main sequence by which $RCF₂NCIF$ is formed. However, reaction d may also be of some importance. In this regard, it can be noted that yields of RNClF are always lower when reactions a + b and c are carried out in sequence.

The reaction of NCl₂ compounds with F_2 (c) to form ClF and NClF is apparently quite general, and it has been extended to noncarbon systems.¹¹ To our knowledge, there have been no previously published reports of this reaction type, although attempts have been made to fluorinate $NCl₂$ groups with other fluorinating reagents.¹² The reaction is unusual in that chlorine is replaced by fluorine with a concomitant increase in the oxidation state of nitrogen by one unit.¹³ Further oxidation and substitution of the second chlorine has a much greater activation energy, as no evidence has been found for $NF₂$ derivatives at 25 °C or lower. The uncatalyzed addition of \overline{F}_2 to $\geq C=N-$ systems (d) in a static system has also apparently not been previously recognized as a useful reac-

⁽¹⁰⁾ Ruff, J. K. *J.* **Org.** *Chem.* **1967,** *32,* **1676.**

^(1 1) DesMarteau D. D.; Seppelt, K. *Angew. Chem., Int. Ed. Engl.* **1980,19, 643.**

⁽¹²⁾ DeMarco, R. A,; Shreeve, J. M. *J. Fluorine Chem.* **1971,** *1,* **269.**

The positive nature of the chlorine in CF_3NCl_2 , and therefore the formal **assignment of a +I oxidation state to chlorine in this and related compounds, is clear from chemical evidence, e.g.: Kloter, G.; Seppelt, K.** *J. Am. Chem.* **Soc. 1979,** *101,* **347.**

Table I1

a Reference 4. This work.

tion.14 The application of this reaction to a variety of $>C=N$ - derivatives will be reported separately.⁸

All the RNClF derivatives obtained in this work are stable, colorless liquids at 22 °C. None have shown any tendency to explode, although caution is advised in handling these materials. In NMR studies, $CCl₃CF₂NCIF$ did not decompose at 100 $^{\circ}$ C in CCl₄, and (CF₂NClF)₂ was stable in CFCl₃ at 60 \degree C, the highest temperature used. The stability of ClC-F₂NClF was examined in some detail, since previous reports indicated the compound eliminated $Cl₂$ at $25^{\circ}C$.⁴ We found that pure ClCF₂NClF is stable at 25° C in glass or fluorine-passivated stainless-steel and that the compound is unaffected by ordinary room light. At 100 °C in Pyrex, the compound was recovered quantitatively after 1 day. The previously observed instability must therefore have been due to impurities. This is consistent with long-reaction-time studies done with $CICN/CIF/F₂$, where the yield decreased markedly after standing 1 day as compared to a 4-h reaction time.

The 19 F NMR spectra of RCF₂NClF provide additional evidence for the high barriers to inversion observed in fluorinated amines. 4.15 The asymmetric nitrogen atom causes the two methylene fluorines to be diastereotopic, as long as the rate of inversion at nitrogen is slow on the NMR time scale. As was previously observed for ClCF₂NClF and $(CF_3)_2$ CFN-ClF, this gives rise to ABX-type spin systems with a large geminal $\bar{F}-F$ coupling.⁴ As long as there are two fluorine atoms on the α -carbon, the inversion barrier will be quite high in perhalogenated systems.16

(15) Griffith, D. L.; **Roberts,** J. D. *J. Am. Chem.* **Soc. 1965, 87, 4089.** Johnson, F. A.; Haney, L.; Stevens, T. E. J. Org. Chem. 1967, 32, 466.

In previous work with $(CF_3)_2$ CFNClF, equivalence of the $CF₃$ groups was observed at 60 °C, whereas ClCF₂NClF did not exhibit coalescence up to **100** 0C.4 In this work, Cq **C-** F_2NCIF was heated to 100 °C in CCl₄, where the two methylene fluorines were still separated by **1750** Hz and had moved only **20** Hz toward the center as compared to the **29** $\rm ^oC$ spectrum. In (CF₂NClF)₂ the NMR spectrum shows the presence of two diastereomers which we have labeled A and B. They are not formed in equal amounts, which **is** reasonable considering that the compound is probably formed by the stepwise fluorination of the intermediate $(CF_2NC1_2)_2$. The NMR for the two diastereomers can be considered that of two AA'BB'XX' spin systems. Not all the coupling constants could be evaluated, and the values given in the Experimental Section are only approximate except for J_{AB} and $J_{A'B'}$, which could be easily determined from the experimental spectra. Heating this sample to 60 \degree C caused the CF₂ multiplets of isomer A to move **22** Hz to the center while the change in isomer B was only 5 Hz. For comparison, the Δ_{AB}/J_{AB} values for the known 11. to move 22 Hz to the center while the change in isomer **B** was
only 5 Hz. For comparison, the Δ_{AB}/J_{AB} values for the known
perhaloamines of the type RCF^{AFB}NClF are given in Table

Summary

In summary a wide variety of **N-chloro-N-fluoroperhalo**alkylamines can now be prepared in excellent yield. The chlorofluorination reaction can probably be used with nearly any perhalogenated cyano derivative. These new amines are expected to have an interesting reaction chemistry via the reactivity of the N-Cl bond, and they are the precursors to the high-yield synthesis of N-fluorimines and N-fluoramines.^{6,8}

Acknowledgment. The support of this work by the Army Research Office-Durham (Grant No. DAAG 29-77-G-0071) is gratefully acknowledged.

Registry No. ClCF₂NClF, 33757-11-8; CF₃CF₂NClF, 13880-72-3; CF₃CN, 353-85-5; CF₃CF₂NCl₂, 677-66-7; CF₃CF₂CF₂NClF, 75347-91-0; CH₃CF₂NClF, 16276-45-2; CH₃CF₃, 420-46-2; CICN, 506-77-4; CF₃CF=NCl, 650-50-0; CF₃CF₂CN, 422-04-8; (CN)₂, **460-19-5; CClICN, 545-06-2; CHpCN, 75-05-8; ClF, 7790-89-8; F2,** 7782-41-4; CICF₂NCl₂, 28245-34-3. 72306-69-5; (CF₂NClF)₂ (isomer 1), 75347-90-9; CCl₃CF₂NClF,

Contribution from the Corporate Research-Science Laboratory, Exon Research and Engineering Company, Linden, New Jersey 07036

Circumnavigation of Uranylhexafluoroacetylacetonate by Lewis Bases

G. M. **KRAMER,* M. B. DINES, R. KASTRUP,** M. **T. MELCHIOR, and E. T. MAAS, JR.**

Received January 25, 1980

The chelated uranylhexafluoroacetylacetonate ion forms adducts with Lewis bases which are fluxional when studied by ¹⁹F NMR. The compounds have a pentagonal-bipyramidal geometry in which the base occupies one site in the equatorial **ring. The kinetic parameters suggest that the equilibrating process is one in which the base migrates to a complementary site** on **the other side** of **the uranyl ion via intermediate capped octahedral structures.**

The tetrahydrofuran adduct of uranylhexafluoroacetylacetonate, **1,** has recently been described.' *An* X-ray crystal structure determination revealed a linear UO_2^{2+} ion surrounded equatorially by a pentagonal array of the five oxygen atoms contributed by the pair of bidentate anions and the tetrahydrofuran molecule. In this configuration there are CF_3 and carbonyl **groups** both near and remote from the THF molecule, and NMR studies might be expected to display a magnetic inequality between them. At ambient temperatures in nonpolar solvents, however, both ¹⁹F and ¹³C NMR studies indicate single sharp resonances for the CF_3 and carbonyl groups.

⁽¹⁴⁾ There are many reports on the reaction of F_2 with unsaturated car-bon-nitrogen compounds² using flow systems and/or metal fluoride **catalysts.**

 (16) In CH₃CF₂NCIF, the ¹⁹F NMR of the CF₂ group is a basic quartet with (16) In CH₃CF₂NClF, the ¹⁹F NMR of the CF₂ group is a basic quartet with some additional splitting. The CF₂ group does not exhibit the expected ABXM₃ second-order pattern, implying that the inversion rate at n **degenerate.**

⁽¹⁾ *G.* **M. Kramer, M. B.** Dines, **R. B. Hall, A. Kaldor, A. R. Jacohsen and** J. **C. Scanlon,** *Inorg. Chem.,* **19, 1340 (1980).**